**Definition 1. Exponential Functions:** A function f of the form

 $f(x) = a^x,$ 

where a > 0 and  $a \neq 1$  is called an exponential function with base a. Its domain is  $(-\infty, \infty)$ .

**Definition 2.** Properties of Exponential Functions: Let  $f(x) = a^x$ , a > 0 and  $a \neq 1$ .

- 1. The domain of  $f(x) = a^x$  is  $(-\infty, \infty)$ .
- 2. The range of  $f(x) = a^x$  is  $(0, \infty)$ , which means that the entire graph lies above the x-axis.
- 3. For a > 1,
  - (a) As  $x \to \infty$ , then  $f(x) \to \infty$ .
  - (b) As  $x \to -\infty$ , then  $f(x) \to 0$ , which means that y = 0 is the horizontal asymptote.
- 4. For 0 < a < 1,
  - (a) As  $x \to -\infty$ , then  $f(x) \to \infty$ .
  - (b) As  $x \to \infty$ , then  $f(x) \to 0$ , which means that y = 0 is the horizontal asymptote.
- 5. The graph of  $f(x) = a^x$  has no x-intercepts.

**Example 1.** The graph of  $f(x) = (\frac{1}{3})^x$  is



**Example 2.** Let  $f(x) = 3^{x-2}$  be an exponential function. Find f(4) and f(2). <u>Solution:</u> Since  $f(x) = 3^{x-2}$ , then

$$f(4) = 3^{4-2} = 3^2 = 9.$$

and

$$f(2) = 3^{2-2} = 3^0 = 1.$$

Definition 3. Exponential Equations: In case of same base a, the equation

 $a^u = a^v$  implies u = v.

**Example 3.** Solve the exponential equations  $2^x = 128$  and  $5^{x(x-3)} = \frac{1}{25}$  for x. <u>Solution:</u> For the equation  $2^x = 128$ ,

$$2^x = 128$$
$$2^x = 2^6$$

Then x = 6. For the equation  $5^{x(x-3)} = \frac{1}{25}$ ,

$$5^{x(x-3)} = \frac{1}{25}$$
$$5^{x(x-3)} = 5^{-2}$$

Then

$$x(x-3) = -2$$
  

$$x^{2} - 3x = -2$$
  

$$x^{2} - 3x + 2 = 0$$
  

$$(x-2)(x-1) = 0$$

Then x = 2 or x = 1.

**Example 4.** Find the exponential function  $f(x) = a^x$  that contains (3, 125).

**Solution:** Since f(x) contains (3,125), then  $125 = a^3$  which implies that a = 5. Hence,  $f(x) = 5^x$  for any x.